
www.manaraa.com

Ann Oper Res (2018) 266:183–198
https://doi.org/10.1007/s10479-017-2573-5

ANALYTICAL MODELS FOR FINANCIAL MODELING AND RISK MANAGEMENT

Recent advancements in robust optimization
for investment management

Jang Ho Kim1 · Woo Chang Kim2 · Frank J. Fabozzi3

Published online: 20 August 2017
© Springer Science+Business Media, LLC 2017

Abstract Robust optimization has become a widely implemented approach in investment
management for incorporating uncertainty into financial models. The first applications were
to asset allocation and equity portfolio construction. Significant advancements in robust port-
folio optimization took place since it gained popularity almost two decades ago for improving
classical models on portfolio optimization. Recently, studies applying the worst-case frame-
work to bond portfolio construction, currency hedging, and option pricing have appeared
in the practitioner-oriented literature. Our focus in this paper is on recent advancements to
categorize robust optimization models into asset allocation at the asset class level and port-
folio selection at the individual asset level, and we further separate robust portfolio selection
approaches specific to each asset class. This organization provides a clear overview on how
robust optimization is extensively implemented in investment management.
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1 Introduction

Robust portfolio optimization has been one of themost implemented techniques in investment
management for resolving the sensitivity ofmean-variance portfolio optimization (Markowitz
1952).Whilemean-variance analysis requiresmean, variance, and covariance of asset returns,
the optimal allocation is highly dependent on the estimated value of these inputs. Because
these values cannot be estimated with certainty, robust portfolio optimization models uncer-
tainty in financial markets using uncertainty sets that contain possible realizations and the
optimal portfolio in the worst case is computed for achieving robustness (Fabozzi et al. 2007).
Achieving robustness aims at allowing certain degrees of uncertainty in inputs while gen-
erating manageable outputs. This goal is accomplished in robust optimization by defining
uncertainty sets for representing possible input values and the robust solution is produced
from worst-case or minimax approaches. Its main advantage over stochastic programming is
less computational complexity because certain uncertainty sets result in robust counterparts
of portfolio problems that are formulated as tractable optimization problems (Goldfarb and
Iyengar 2003; Tütüncü and Koenig 2004). Even various extensions of the classical mean-
variance model with risk measures such as value-at-risk and conditional value-at-risk can be
reformulated as robust conic programming problems that are efficiently solved (El Ghaoui
et al. 2003; Zhu and Fukushima 2009).

Naturally, many studies on robust optimization in portfolio management focus on various
formulations of portfolio problems, selection of appropriate uncertainty sets, and derivation
of robust counterparts that lead to tractable robust models (Fabozzi et al. 2010; Kim et al.
2014b). Earlier work on robust approaches especially applies the worst-case technique under
a simple investment setting where multiple risky assets are considered without distinguishing
different asset types. Recently, an increasing number of studies have addressed ambiguity
in different stages of the portfolio management process as well as uncertainty specific to
certain asset classes. Robust optimization is no longer only applied to asset allocation or
stock portfolio construction; the worst-case framework is also used in areas of investment
management such as hedging currency risk and pricing derivatives.

Therefore, in this paper, we survey recent developments in robust optimization from an
investmentmanagement perspective in order to provide an overview of how robustmodels are
used in various domains of investment management. This is a notable distinction from other
papers in the literature that outline robust portfolio optimization, which have been mostly
organized based on problem formulation such as the complexity of the portfolio problem,
the type of uncertainty set, and the risk measure employed. More importantly, there have
been many studies on robust investment management in recent years and, in order to present
an up-to-date overview, we primarily concentrate on developments since 2010 (with only a
few exceptions) that have sparked research in new applications. We purposely omit detailed
formulations in this paper because our objective is to explain which components are modeled
as uncertain, why robust optimization is applied in each case, and how robust optimization
improves risk management in different stages of the investment management process.

The organization of the paper is as follows. We follow the portfolio management process
and, thus, first discuss asset allocation and then cover individual asset classes separately.
Sect. 2 begins by demonstrating the sensitivity of the classical asset allocation approach
before reviewing studies on robust asset allocation and robust asset-liability management.
In Sect. 3, robust optimization for equity portfolios, bond portfolios, and currency portfolios
are examined. Worst-case approaches for using derivatives in portfolio management and for
option pricing are presented in Sect. 4. Section 5 concludes the paper.
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2 Asset allocation

In the investment management process, asset allocation is where the first set of allocation
decisions is made (Maginn et al. 2007). Asset allocation greatly affects portfolio behavior
(Brinson et al. 1995), as well as being the critical step in selecting the list of candidate
asset classes. As the traditional approach to asset allocation is the mean-variance framework,
much of the advancement on robust asset allocation is various reformulations of the classical
mean-variance problem. We begin this section by demonstrating the sensitivity of the tradi-
tional approach and then present the robust models. In addition, asset-liability management
problems that utilize the worst-case framework are introduced.1

2.1 Sensitivity of mean-variance asset allocation

In finance, robust optimization has been applied most frequently in portfolio allocation due
to the optimal portfolio weights of the mean-variance framework being highly dependent on
the estimated input values. This concern has been widely observed through comprehensive
empirical analyses. The high sensitivity in portfolio weights caused by perturbation in the
estimation of a single asset is commented in Best and Grauer (1991a, b). In Michaud (1989),
the mean-variance model is referred to as estimation-error maximizers because the over-
weighted assets tend to be the ones with the largest estimation errors. Similar conclusions on
the impact of input sensitivity on optimal portfolio weights are reported by Broadie (1993),
Chopra and Ziemba (1993), among others.

Since the main focus of this paper is the utilization of robust methods in investment
management, we demonstrate its essential needwith a simple example on how allocations can
be easily shifted, and consequently affecting the portfolio’s risk exposure. In our experiment,
an asset manager uses the classical mean-variance optimization for allocation among four
asset classes where the mean vector and covariance matrix of returns are estimated from the
weekly returns during the first 13weeks (i.e., 3months) of 2016. In particular, the formulation
that minimizes portfolio variance with a certain level of portfolio return is optimized where
negative allocations (i.e., short selling) are avoided. It is then observed how the optimal
allocation changes when one additional observation (i.e., return on the 14th week of 2016) is
included for estimating the expected return of a single asset class. Consideration of including
one additional observation for estimating expected returns is a decision that routinely arises
in portfolio management. But as shown next, this rather trivial choice can lead to significant
changes in the optimal portfolio weights if the uncertainty in returns is not modeled. Four
major U.S. asset classes are considered with the returns of the representative indices collected
from Datastream: stocks (Russell 3000), bonds (Datastream U.S. government bond index),
commodity (DJ-UBS commodity index), and real estate (MSCI US REIT).

As shown in Fig. 1, three separate comparisons are presented for portfolios with weekly
return levels of 0.1, 0.2, and 0.25%. In each plot for a single asset class, case 0 is when 13-
week returns are used for all estimations, case 1 is identical to case 0 except only the expected
return of stocks is estimated from 14-week returns, case 2 is identical to case 0 except only
the expected return of bonds is estimated from 14-week returns, and so on. For example,
the plot for stocks in panel A of Fig. 1 shows that about 50% is invested in stocks when the
13-week returns are used, but the allocation to stocks decreases to less than 10% when the
expected return of commodities is estimated from the 14-week returns. This is a significant
shift in the allocation to stocks caused by a minor difference in how the expected return of

1 A survey of robust asset allocation is also presented in Scutellà and Recchia (2013).
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Fig. 1 Portfolio allocation for three separate weekly portfolio return levels (non-negative weights)

a single asset class is computed. Although the other outcomes might not seem like critical
adjustments, stocks will not be considered attractive in all cases unless government bond
returns are estimated from the first 14weeks of 2016. The deviation is much more dynamic
when short positions are allowed, as shown in Fig. 2. It is clear from these simple examples
that robustness is essential in portfolio risk management mainly because of ambiguity in
asset returns.2

2.2 Robust asset allocation

One of the first robust approaches to asset allocation was introduced by Tütüncü and Koenig
(2004). They present robust formulations when the expected return vector and the covariance
matrix of asset returns are defined by lower and upper bounds and also illustrate how to
compute the robust efficient frontier. Uncertainty sets based on bootstrapping and moving
averages are explored and numerical experiments with various asset classes demonstrate how
robust portfolios have improved worst-case performance, stability over time, and concentra-
tion on a small set of asset classes. Recently, a variation of this robust model is introduced
by Yam et al. (2016) that allows short positions. Investigating several robust formulations of

2 In both Figs. 1 and 2, the allocation to stocks decreases whereas the allocation to bonds increases as the
portfolio return level is raised. This is observed because bonds have relatively high expected return with low
variance and stocks have negative expected return with high variance during the first 3months of 2016.

123



www.manaraa.com

Ann Oper Res (2018) 266:183–198 187

Fig. 2 Portfolio allocation for three separate weekly portfolio return levels (shorting allowed)

mean-variance problems, they find that the effect of uncertainty in expected returns is more
critical than the uncertainty in covariance matrix for controlling sensitivity.

The practical advantage of applying robust models to strategic asset allocation is demon-
strated by Asl and Etula (2012). In their robust asset allocation approach, they perform robust
optimization with input estimated from a multi-factor model, which is suitable for estimating
expected returns and risk across asset classes. Their empirical tests reveal less dispersion in
robust portfolios invested in 15 asset classes and, thus, considered to be more suited for asset
allocation than classical approaches.

The out-of-sample performance of robust portfolios is tested by Ben-Tal et al. (2010),
where they introduce a soft robust approach that relaxes the robustness of the standard robust
optimization models. They demonstrate its benefits by comparing performance of portfolios
that invest in 11 asset classes. The out-of-sample results demonstrate a higher gain for the soft
robust approach while only sacrificing limited downside risk. Recchia and Scutellà (2014)
compare performances of several robust asset allocation strategies and confirm empirically
that the relaxed robust models of Ben-Tal et al. (2010) show strong robustness. Moreover,
they find that the classical robust model of Tütüncü and Koenig (2004), which minimizes
worst-case variance, exhibits low turnover and high diversification.

Although some studies are not only targeting allocation among asset classes, they nonethe-
less make great contribution to asset allocation by considering more practical investment
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situations. For example, constraining the number of assets in a portfolio is desired in asset
allocation. Sadjadi et al. (2012) derive robust formulations of portfolio optimization problems
for constructing portfolios with a predefined limited number of assets when asset returns are
subject to uncertainty and also develop a procedure based on genetic algorithms for finding
the optimal robust portfolio. They also demonstrate its implementation with historical data
for the Hang Seng, DAX 100, FTSE 100, S&P 100, and Nikkei 225.

Similarly, Gülpınar et al. (2011) analyze robust counterparts of a portfolio problem with
discrete asset choice constraints that control the cardinality and buy-in threshold of a portfo-
lio. Although the side effect of including these constraints that reflect investors’ asset choice
preferences in practice is the discontinuity of efficient frontiers, robust portfolio optimization
with ellipsoidal uncertainty sets are shown to reduce the discontinuity caused by these con-
straints. They also demonstrate the advantage of robust portfolios by comparing the actual
efficient frontiers, which reflect actual investing situations where portfolios are optimized
from estimated values and expected portfolio returns are computed from true values.

2.3 Application in asset-liability management

Asset-liability management (ALM) mainly applies to pension plans with long investment
horizons that need to manage assets relative to projected liabilities. Although ALM prob-
lems are traditionally solved using stochastic programming, several studies utilize robust
optimization because of its computational advantage.

Iyengar and Ma (2010) consider an ALM problem for defined-benefit pension plans.
The pension fund management problem is formulated as a chance-constrained optimization
problem and a robust problem is created with a robust constraint that replaces the chance
constraint, which becomes a second-order cone programming problem. Furthermore, they
demonstrate how the robust approach leads to more conservative but robust performance,
and conclude that robust methods are well suited for large-scale pension fund management
problems because of their reduced computational complexity compared to stochastic pro-
gramming.

Gülpınar and Pachamanova (2013) present an ALM model for pension funds based on
robust optimization with ellipsoidal uncertainty sets and also discuss formulations for mod-
eling time-varying investment opportunities with a vector-autoregressive process. In their
model, uncertainty exists in asset returns and interest rates, which determine the asset value
and the value of future liabilities, respectively. Although their empirical findings do not pro-
vide a conclusive comparison between the robust ALM approach and classical stochastic
programming methods, they do highlight the computational advantage of the robust model.

A similar approach is taken by Gülpınar et al. (2016) for solving an ALM problem for
a company that issues investment products with guarantees, where the two uncertain com-
ponents are asset returns and the value of future liabilities. They propose symmetric and
asymmetric uncertainty sets and present simulation results to show how robust approaches
perform well under uncertain situations with fast computation time.

2.4 General robust allocation models

In Sect. 2.4, we mention notable studies that may not be classified as robust asset allocation
or robust ALM but, nonetheless, present strategies that improve robustness when managing
portfolios.

Sharpe ratio is one of the key measures of risk-adjusted performance and the portfolio
problem of maximizing Sharpe ratio under asset return uncertainty was one of the ear-
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lier applications of robust portfolio optimization (Goldfarb and Iyengar 2003; Tütüncü and
Koenig 2004). Deng et al. (2013) also optimize the maximization of worst-case Sharpe ratio,
but use uncertainty sets of Sharpe ratio estimators. Their model selects the portfolio with
the largest worst-case Sharpe ratio within a given confidence interval, which is shown to be
equivalent to maximizing the value-at-risk-adjusted Sharpe ratio based on the observation
that Sharpe ratio estimators are normally distributed.

Unlike the popular approach for considering the tradeoff between risk and return, Fliege
and Werner (2014) take the multi-objective approach for robust asset allocation. They derive
the robust counterpart to a multi-objective programming problem where the two objectives
are minimizing portfolio risk and maximizing portfolio return. They also demonstrate how
robust efficient frontiers can be used for finding an appropriate allocation under uncertainty.

Instead of directly assuming ambiguity in asset returns, Lutgens and Schotman (2010)
model uncertainty through advice obtained from multiple expert advisors on mean vector
and covariance matrices. The robust portfolio is found by evaluating the worst case among
multiple recommendations. They analyze two situations where ambiguity in advice exists
either only in expected returns or in both the mean and covariance matrix. The benefits from
considering a robust approach based on multiple recommendations are stressed, especially
when advisor recommendations are dispersed.

An alternative to solving mean-variance portfolio optimization is to consider the Kelly
criterion (Kelly 1956). The strength of growth-optimal portfolios for a long period may be
promising, but the strategy reveals volatile short-term movements and it requires complete
information of the return distribution. Rujeerapaiboon et al. (2015) propose a robust growth-
optimal model for finite investment periods and uncertain return distributions: the worst-
case value-at-risk of the portfolio growth rate is maximized for forming robust optimal
portfolios. Empirical results show that this robust model outperforms the classical growth-
optimal portfolio as well as several classical mean-variance portfolios.

3 Portfolio selection

In portfolio management, once allocations among asset classes are determined, the portfolio
is further optimized within each asset class. Since different asset classes have distinct charac-
teristics, robust models should be developed independently for each asset class to effectively
manage the relevant risk of the asset class. Here, we discuss robust approaches for equity,
fixed-income, and currency markets. We also note that robust optimization is also applied
to optimal portfolio execution. As execution is also an important stage in portfolio manage-
ment, the optimal liquidation strategy for a portfolio can be strengthened through a minimax
approach (Moazeni et al. 2013).

3.1 Equity markets

Agood number of advances in robust portfolio optimization studymodels for stock portfolios,
especially because of the high volatility in stock markets that call for robust approaches.3

In particular, there have been many attempts to accurately model uncertainty in stocks by
incorporating attributes of stock returns such as skewness and fat tails for forming robust
stock portfolios.

3 Kim et al. (2016b) provide a detailed explanation on how to formulate robust stock portfolio problems and
also a step-by-step guide on finding optimal robust stock portfolios using MATLAB.
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For example, Kawas and Thiele (2011) introduce a log-robust optimization model based
on the log-normal behavior of stock prices. While their model is based on the traditional log-
normal model, the worst-case approach of robust optimization takes into account the fat-tail
events that are under-represented in the traditional approach. Their model also utilizes the
price-of-robustness approach of Bertsimas and Sim (2004) for controlling the conservative-
ness but it is formulated as a linear program that can be efficiently solved. The log-robust
approach is shown to form portfolios that are more diversified with better value-at-risk per-
formance compared to traditional robust portfolio approaches. As an extension, Pae and
Sabbaghi (2014) develop a log-robust optimization with transaction costs. The optimal port-
folio is calculated using linear approximation and the portfolio is confirmed to outperform
the model without transaction costs (Kawas and Thiele 2011) when large transaction volume
is required.

The asymmetry of stock returns and increased correlation during stock market downturns
are addressed by Kim et al. (2015). They demonstrate the value of worst-case informa-
tion in the stock market for gaining robust performance by introducing a simple rule-based
approach that focuses on worst-case returns for constructing robust portfolios. They discuss
the advantage of focusing on worst-case information by relating the approach to robust port-
folio optimization. Thus, Kim et al. (2015) provide support based on stock market behavior
for applying worst-case optimization to portfolio management.

Also addressing return asymmetry, Chen and Tan (2009) introduce a robust optimiza-
tion formulation that is suitable for reflecting the asymmetric returns in equity markets. In
particular, they develop interval random uncertainty set, which is an interval set with ran-
domly fluctuating bounds where upside and downside deviations are modeled separately.
The mean-variance portfolio optimization problem is reformulated by applying interval ran-
dom chance-constrained programming and the robust model is empirically shown to be more
effective when investing in small-cap stocks.

Performance of robust stock portfolios is examined by Guastaroba et al. (2011). They
investigate the in-sample and out-of-sample performances in the stock market of two robust
optimization formulations with conditional value-at-risk as the risk measure. Using the 100
stocks comprising the FTSE 100 index as their universe of candidate stocks, they find that
robust techniques perform well during downward periods but the advantage was not clear in
other cases.

Robust stock portfolio performance is further investigated by Fastrich and Winker (2012)
under a more realistic trading situation that only allows discrete portfolio weights to elimi-
nate purchasing fractional shares, limits the maximum number of assets held in a portfolio,
prohibits short-selling, and takes into account transaction costs. They suggest a hybrid heuris-
tic algorithm to solve the robust portfolio problem under these settings and compare robust
models of Tütüncü and Koenig (2004), Ceria and Stubbs (2006), and an extension of the
Ceria and Stubbs model that includes uncertainty in the covariance matrix. By performing
empirical tests with stocks in the DAX 100 index, they conclude that robust formulations
lead to superior performance, especially when incorporating uncertainty in both the mean
vector and covariance matrix.

Instead of proposing robust formulations or comparing performance, some studies have
analyzed attributes of robust portfolios, finding that robustmodelswith ambiguity in expected
stock returns form portfolios that have higher factor exposure (Kim et al. 2013, 2014a,
2016a). Robust portfolios are shown to have a higher dependency on factor returns through
the Fama-French three factor model and principal components analysis.

Although most of the above studies on robust stock portfolios aim for active returns while
controlling risk, robust portfolio optimization can also be used for constructing a portfolio for
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index tracking. Chen and Kwon (2012) develop a robust model for tracking a market index.
Instead of explicitly limiting the tracking error of a portfolio, the model maximizes pairwise
similarities between assets of the portfolio and the target index, and the robustness is increased
by modeling the uncertainty in similarities through a range of possible values. The proposed
robust portfoliomodel allows setting the number of allowed assets and themodel is formulated
as a 0–1 integer program for identifying the assets included in the tracking portfolio. The
advantage of the robust index tracking problem is demonstrated through portfolios that track
the S&P 100 index.

A robust approach that avoids the use of uncertainty sets on expected returns is also
introduced by Nguyen and Lo (2012). Ranking models have been used in portfolio selection
in order to avoid estimating expected returns, and Nguyen and Lo (2012) derive a robust
ranking problem that can be applied to portfolio optimization when there is uncertainty in
the rankings. Testing the post-earnings-announcement drift effect with stocks in the Dow
Jones Industrial Average Index, they confirm that the proposed robust ranking model reduces
portfolio risk.

3.2 Credit and bond markets

Unlike stocks, the main uncertainty in fixed-income securities is related to the occurrence
of defaults. A number of studies apply robust optimization for forming bond portfolios. For
example, Ben-Tal et al. (2010) illustrate their soft robust approach with a bond portfolio that
invests in 49 bonds in addition to one risk-free asset. The comparison suggests that the soft
robust approach reduces the high conservatism of the standard robust optimization approach,
which is shown to invest heavily in the risk-free asset.

Several studies propose robust models that are suitable for reducing risk specific to fixed-
income securities. Shen et al. (2014) address long-term investment planning of insurance
companies and pension funds and the challenges that arise in long-dated liability valuation.
They consider investment in bonds for minimizing the expected shortfall of long maturity
commitments where a minimax formulation for the optimal bond portfolio allocation models
uncertainty in the risk premium of long-term bonds.

The impact of credit risk model misspecification is critical for bond portfolios because
estimation of default intensity is difficult due to the rarity of default events. Bo and Capponi
(2016) develop a dynamic robust bond portfolio model for investing in risky bonds that
is robust against misspecifications of the reference credit model, deriving Hamilton-Jacob-
Bellman equations for solving their robust problem.

Examination of defaults is also performed by Jaimungal and Sigloch (2012), who con-
sider a hybrid credit model combining two main approaches for modeling default events,
which are intensity-based and structural approaches. They apply the worst-case approach
to value credit derivatives on a firm and derive robust indifference yields and credit
default swap spreads. They find that including ambiguity aversion helps estimating yield
curves and credit default swap spreads, being especially valuable for explaining short-term
spreads.

3.3 Currency markets

While themost popular approach for reducing foreign exchange rate risk is hedging strategies
with derivatives, there have been studies that apply robust optimization to portfolios that are
exposed to currency risk.
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Rustem and Howe (2002) explain worst-case approaches for managing pure currency
portfolios composed of multiple currencies. They suggest a robust formulation for a currency
portfolio optimization problem where the uncertainty in future exchange rates is modeled by
setting upper and lower bounds for each currency. In addition to considering the worst-case
currency returns in their formulation, they model the triangular relationship among exchange
rates to avoid cross-currency inconsistency. They begin with the classical mean-variance
model that finds the tradeoff between return and risk of currency portfolios, but present
various minimax formulations for hedging currency exposure of general asset portfolios as
well as currency portfolios with transaction costs where uncertainty sets are again defined
by individual ranges.

Thework of Rustem andHowe (2002) is extended by Fonseca et al. (2011), which presents
an approach that applies robust optimization when allocating a portfolio among several cur-
rencies where the uncertainty set is defined as an ellipsoid. They also model the triangular
relationship among exchange rates to bind the worst case within no arbitrage conditions.
Furthermore, they demonstrate how currency options can be included in order to also insure
cases when the worst case is realized outside of the uncertainty set defined in the robust opti-
mization formulation. The main advantage of applying robust optimization is the increased
flexibility compared to standard hedging strategies that only utilize derivatives such as for-
wards or futures.

A similar analysis is performed by Fonseca et al. (2012); they also apply robust optimiza-
tion to international portfolios and also protect against cases outside of the defined uncertainty
set with options. However, instead of currency portfolios, they analyze portfolios investing in
assets denominated in different currencies and, thus, are exposed to currency risk. Although
uncertainty in their model exists in both asset and currency returns, they derive a semidefinite
programming approximation of their robust formulation. Moreover, the triangular relation-
ship of foreign exchange rates is also reflected in their model similar to Fonseca et al. (2011)
and demonstrates the flexibility of their proposed robust model.

Fonseca and Rustem (2012b) continue the work of Fonseca et al. (2012) on reducing
ambiguity in asset and currency returns of international portfolios. They revisit the conven-
tional approach of using forward rates to hedge against currency risk and show how forward
contracts can be incorporated into worst-case formulations for international portfolios. Fur-
thermore, forming robust international portfolios under uncertainty in returns of assets and
currencies in a multi-period setting is studied by Fonseca and Rustem (2012a). A compari-
son between a single stage model and their multi-stage model is included to demonstrate the
benefits of their approach.

4 Derivatives

Injecting portfolios with options for hedging purposes is a common strategy in controlling
portfolio risk. Since the payoffs of options are driven by the underlying assets, uncertainty
in the returns of underlying assets affects not only allocation in those assets but options as
well. Thus, robust optimization has been applied to model the uncertainty in asset returns
for portfolios including risky assets as well as options on those assets. In these portfolios,
options may provide protection when asset returns are realized outside of uncertainty sets.
Also, robust replicating portfolios are used for pricing derivatives as we discuss towards the
end of this section.
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4.1 Portfolios containing derivatives

Earlier models on derivative portfolios consider European style options where the investment
period endswhen the option expires. Lutgens et al. (2006) use robust optimization for hedging
with options. They begin by deriving the expected return of options in terms of the possible
realized returns of the underlying stocks. Their approach models uncertainty in the expected
returns of the underlying stocks since option returns are drivenby the stock returns. Investment
in risky assets and options on these assets are designed by including robust constraints on
portfolio performance. In order to demonstrate robust hedging, the robust technique is applied
to several hedging scenarios, where investment in options on an index is combined with the
constituent stocks of the index as well as options on those stocks.

Similar to Lutgens et al. (2006), Zymler et al. (2011) also study robust portfolios that invest
in both stocks and their options in a single-period setting. While Zymler et al. also adopt
ellipsoidal uncertainty sets, they present a variation of the portfolio optimization problem for
stocks and options that has a computational advantage. They also formulate a robust portfolio
optimization model that insures cases where realized returns are not from the uncertainty
set. Empirical analyses from simulated and historical data confirm the better out-of-sample
performance of their robust approaches compared to classical mean-variance portfolios. In
particular, the insured robust model is shown to be more effective during extreme events.

Robust equity portfolios with option protection are also studied by Ling and Xu (2012).
Theirmodel is an extension ofGoldfarb and Iyengar (2003), which assumes a factormodel for
modeling uncertainty in returns that defines a joint uncertainty set. Nonetheless, the objective
of designing a robust portfolio with options is explored to hedge risk from extreme events
that are not covered by uncertainty sets and the advantage is illustrated using simulated data
and returns from the Chinese stock market.

Whereas the above studies assume a single-period investment where the option expires
at the end of the period, Marzban et al. (2015) address multi-period portfolio selection
when American style options are available. In this case, the exercise time of options also
becomes a decision variable and the wealth at each period can be expressed by the possible
actions an investor can take. They derive the multi-period problem for maximizing terminal
wealth, which is referred to as the insuredmulti-period robust portfolio optimization problem.
Optimal allocation among 30 stocks and 40 options on each stock is analyzed for a 3-month
period and improvements are demonstrated for data with high and low levels of error.

Application of robust optimization to hedging barrier options is investigated by Maruhn
and Sachs (2009). Hedge portfolios consisting of bonds and tradable call options for barrier
option replication are exposed to changes in the volatility surface, and a robust static hedging
strategy is developed to ensure that the value of the hedge portfolio is no lower than the
payoff of the barrier option.

Risk management in exotic derivatives can also benefit from the worst-case framework.
Gülpınar and Çanakoḡlu (2016) propose robust approaches for managing portfolios exposed
to temperature uncertainty. Weather derivatives have been used for hedging risk by prop-
erty and casualty insurance companies, hedge funds, and energy companies. Gülpınar and
Çanakoḡlu derive the robust counterpart of a portfolio problem for weather futures contracts
on temperature indices where temperature uncertainty is modeled by ellipsoidal or asym-
metric uncertainty sets. While empirical analyses reveal better worst-case performance and
diversification for the robust approaches, Gülpınar and Çanakoḡlu stress the importance of
defining suitable uncertainty sets.

In addition, as already discussed in Sect. 3.3, notable work on robust currency portfolios
also design robust problems with derivatives for hedging purposes.
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4.2 Options pricing

Portfolio optimization can be used for option pricing through a replicating portfolio where
the portfolio matches the payoff of an option. Similar to previous accounts on robust portfolio
optimization, minimax methods can be applied for constructing replicating portfolios with
reduced sensitivity.

Robust option pricing is studied by Bandi and Bertsimas (2014), who combine the repli-
cating strategy with robust portfolio optimization. In particular, the worst-case replication
error of a replicating portfolio is minimized, which consists of stocks and a risk-free asset.
The uncertainty in the underlying price dynamics is modeled using polyhedral sets and this
results in robust option pricing problems that are linear programs. Furthermore, they suggest
robust option pricing for various options such as American options, Asian options, barrier
options, and high-dimensional options that depend on a large number of underlying assets.

Finally, DeMarzo et al. (2016) also present an approach for robust option pricing but they
focus on calculating robust bounds for option prices. The proposed robust bounds on price
paths based on regret minimization is valuable because the bounds only depend on realized
quadratic variation of the price process and are independent of the specific price process, the
timing of trade, and the underlying price kernel.

5 Discussion on optimization methods

As summarized in previous sections, robust optimization is applied to a wide range of invest-
ment situations. Robust optimization problems take various forms depending on how the
uncertain components are modeled. Furthermore, the resulting robust formulations may
require relaxation or heuristic algorithms for efficiently solving for the optimal robust invest-
ment. Therefore, in this section, we summarize the robust models with focus on optimization
methods. While a description of robust studies is included in the earlier sections, this section
provides an overview.

Since robust optimization introduces an uncertainty set and formulates the robust coun-
terpart of the original investment problem for computing the worst-case optimal solution,
the resulting robust problem has a different formulation and often with higher complexity.
Thus, it is most important to analyze the type of uncertainty sets and the formulation of
robust counterparts. In fact, the choice of uncertainty sets determines whether the resulting
robust problems can be reformulated as either linear programs, quadratic programs, or other
optimization problems and, hence, also controls whether there exists known efficiently algo-
rithms for solving the resulting robust formulations. This is summarized in Table 1 to show
the popular choice of uncertainty sets and corresponding types of robust formulations for
different investment problems.

Overall, the focus of uncertainty is on in mean, variance, and covariance of returns.
Portfolio robustness can be increased by modeling uncertainty in the returns of the candidate
assets and this is the approach taken by most robust models for asset allocation, asset-
liability management, equity investments, and currency portfolios. Since derivative securities
depend on underlying asset movements, many robust optimization approaches for derivative
investments address uncertainty in the underlying such as stock returns or temperature.

In terms of the geometry of uncertainty sets, interval and ellipsoidal sets are most widely
used. The worst case of interval uncertainty sets can usually be expressed as linear constraints
and can be included without affecting the complexity of the investment problem. Definitions
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Table 1 Uncertainty sets and optimization models used in investment management

Uncertain components Uncertainty sets Optimization models

Asset allocation Mean, variance, and
covariance of asset
returns

Interval, ellipsoidal,
norm

Second-order cone programming,
mixed-integer programming,
multi-objective programming

Asset-liability
management

Mean of asset returns Ellipsoidal Second-order cone programming

Equity portfolios Mean, variance, and
covariance of stock
returns

Interval, discrete Linear programming,
mixed-integer programming

Currency portfolios Currency returns Interval, ellipsoidal,
joint

Semi-definite programming

Derivatives Mean, variance, and
covariance of
underlying stock
returns

Interval, ellipsoidal,
joint, norm

Linear programming,
second-order cone
programming, semi-infinite
programming

Table 2 Various problem formulations of robust optimization

Problem formulations Example articles

Optimization model Linear programming Kawas and Thiele (2011)

Mixed-integer programming Gülpınar et al. (2011), Chen and Kwon
(2012), Nguyen and Lo (2012)

Second-order cone programming Gülpınar and Pachamanova (2013), Lutgens
et al. (2006), Zymler et al. (2011)

Semi-definite programming Fonseca et al. (2012), Rujeerapaiboon et al.
(2015)

Multi-objective programming Fliege and Werner (2014)

Problem type Multi-stage problem Fonseca and Rustem (2012a), Marzban et al.
(2015)

Regret minimization DeMarzo et al. (2016), Xidonas et al. (2017)

Ranking problem Nguyen and Lo (2012)

Uncertainty set Interval Tütüncü and Koenig (2004), Rustem and
Howe (2002)

Ellipsoidal Fonseca et al. (2011), Gülpınar et al. (2016)

Joint Ling and Xu (2012), Fonseca and Rustem
(2012b)

Norm, Polyhedral Bandi and Bertsimas (2014), Sadjadi et al.
(2012)

Constraint Chance-constrained Iyengar and Ma (2010), Rujeerapaiboon
et al. (2015)

Cardinality-constrained Gülpınar et al. (2011), Chen and Kwon
(2012)

based on d-norms introduced by Bertsimas et al. (2004) also lead to polyhedral uncertainty
sets. On the other hand, ellipsoidal uncertainty sets lead to adding a second-order cone
constraint to the original problem.
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Furthermore, the worst case approach of robust optimization applied to problemswith car-
dinality constraints results in mixed-integer programming. While the majority of the studies
focus on robust counterparts of single-period models, robust optimization can be applied to
decisions each period that result in robust multi-stage optimization. Various characteristics of
robust optimization formulations for investment management are also summarized in Table 2
along with a few notable articles.

6 Conclusion

Robust optimization is aworst-case approach that is effective inmodeling uncertain situations
and it is widely explored in portfolio management. An increasing number of investment
problems are applying worst-case models as a solution to dealing with uncertain movements
of financial instruments. As we have discussed in this paper, the flexibility of the robust
optimization framework allows for application to various investment problems. The latest
developments on robust optimization in investment management address a wide range of
problems, including asset-liability management and pricing derivatives, and a variety of
asset classes, including bond and currency markets.

More recently, robust models have also been applied to topics of practical interest such
as risk budgeting (Kapsos et al. 2017), factor-based investing (Kim et al. 2017), and incor-
porating investor views (Hasuike and Mehlawat 2017). As mentioned above, the worst-case
approach can be applied to practical investment settings due to the flexibility of the approach.
More importantly, robust optimization becomes a powerful strategy in practice because
robustness is achieved without heavily penalizing the computational complexity of the prob-
lem.We believe the use ofworst-case approaches formanaging risk in financialmodelingwill
continue to grow because of the applicability of robust optimization and also since uncertain
behavior is accepted as an inherent characteristic of investing in financial markets.
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